MRI
MRI should not be confused with the NMR spectroscopy technique used in chemistry, although both are based on the same principles of nuclear magnetic resonance. In fact MRI is a series of NMR experiments applied to the signal from nuclei (typified by the hydrogen nuclei in water) used to acquire spatial information in place of chemical information about molecules. The same equipment, provided suitable probes and magnetic gradients are available, can be used for both imaging and spectroscopy.
Application In clinical practice, MRI is used to distinguish pathologic tissue (such as a brain tumor) from normal tissue. One advantage of an MRI scan is that it is thought to be harmless to the patient. It uses strong magnetic fields and non-ionizing radiation in the radio frequency range. Compare this to CT scans and traditional X-rays which involve doses of ionizing radiation and may increase the risk of malignancy, especially in a fetus.
While CT provides good spatial resolution (the ability to distinguish two structures an arbitrarily small distance from each other as separate), MRI provides comparable resolution with far better contrast resolution (the ability to distinguish the differences between two arbitrarily similar but not identical tissues). The basis of this ability is the complex library of pulse sequences that the modern medical MRI scanner includes, each of which is optimized to provide image contrast based on the chemical sensitivity of MRI.